
From: "Don Johnson" <djohnson@certicom.com>
To: kmscomments@nist.gov
 Date: Sat, 27 Oct 2001 10:05:19 -0400
Subject: Don Johnson comments for 2nd NIST KMS workshop

NIST,
I offer the following comments for consideration at the 2nd KMS workshop. Please confirm
receipt. As I cannot attend at this short notice, I hope these comments help. It is fine with me if
you distribute these comments at the meeting. If any questions arise, please send email. If
possible, I would appreciate responses, at least on my important comments. Thanks for your
consideration,
Don Johnson, Certicom

My biggest concern is that I think no method defined in these proposals should be removed from
consideration at this Nov. 2001 meeting as we lack:
1) Security attributes table for all schemes.
2) Performance summary table for all schemes. Things just cannot be compared until then. In
fact, I can see a use for each scheme, but if someone wants to remove one, we at least should
have all the info to discuss it.

On discussion issues from agenda:
1) Encryption should include X9.63 ECIES even if X9.44 RSA is not added yet.
2) KC is often provided by immediate use of the derived key. Specifying an explicit form of KC
is useful for safety reasons and/or if the derived key is not known to be used immediately, for
example, a key management server should do KC as a service to its clients. But KC in a small
device may be costly overhead.
3) KC should be mandatory if the key is not known to be used immediately and the security
attributes need to be solidified. For example, in a high-risk or high-value transaction it can be
prudent to do KC and it should be required if the keys are not used immediately. KC should be
mandatory for a key management server, this is part of the service it provides.
4) Symmetry is desirable as it simplifies calculations, but the security properties of the identify
OR/AND function are unclear. I do not think alphabetical order is a good idea, this seems costly
in a small device. Where did the identity OR/AND function come from? Too bad this was not
discussed in ANSI X9. As the OR/AND function (even if it really is XOR/AND) does not allow
recovery of the identities, it seems spoofable to some degree (as it cannot distinguish which
identity had a '1' and which a '0' bit when these bit locations are OR/XOR/ANDed). It does do
something and is better than not doing anything I guess. Better would be some method that
allows recovery of the identities, then it would not be spoofable. This area needs more thought.
5) It is conservative design to add the identities as input to the KDF. There are existing systems
that do not use this as it was not discussed as a requirement at ANSI X9 meetings. Perhaps an
acceptable compromise would be to require it for high-risk or high-value transactions.
6) X9.42 and X9.63 DH/MQV assumes 2 parties, although DH extends to multiparty. Is this
what is meant by the question? If so, we could ask X9 if this functionality is desired. Does this
mean generating lots of keys for different applications? If so, this can be handled by identifying
the use of the derived key as part of the input to KDF.
7) Entity authentication is the big attribute. Forward secrecy is useful for data confidentiality.

8) (a) Rough performance comparisons in number of basic crypto operations (point
multiplication, modular exponentiation) allows basic performance cost comparisons between the
various methods. This is a factor in deciding what to use along with security attributes achieved.
I can help with this, ISO 15946-3 did this for ECC methods.
(b) I think some discussion differentiating high-risk and/or high value transactions from normal
ones is appropriate. Things that are appropriate for high-security needs may be too costly for
normal everyday use. I think ways to protect $50 can be simpler than ways to protect $5M. Short
term tactical plans can need less assurance of security than long term strategic ones. This is just
accepting reality. For example, for high stuff, I would suggest requiring AES as a starter.
(c) Given all the security requirements stated, some mention of the potential for side-effect
attacks seems warranted, as this can unravel a secret/private key by monitoring energy, time,
radio waves, etc.
(d) Wild stuff like Quantum Computing. At least current analysis and assessment should be
stated, else it will be a question.
9) A chart with time on one axis and size (perhaps in log scale) on other axis could track the
largest DL/ECDL/RSA composite factored over time and would be a useful plot to try to
extrapolate from. It is what we know and the past is the best indicator of the future. This gives
useful info to the reader to allow him/her to make decisions.

On Schemes Workshop document:
1) I think that completion of at least a comparison table for section 5 (Security Attributes) and
performance summary (see above) is essential before evaluating the various methods. I can help
with this, I suggest extracting the tables from X9.42 and X9.63 as a start.
2) Section 6.1 DP: What one needs for domain parameters is "assurance of validity", else ALL
intended security attributes (including privacy of the private key) should be assumed to be void;
however, it is not true that one needs to validate the DP oneself, this is just one option. This
assurance can be provided by selecting the DP from a list published by a trusted organization
(e.g., the NIST or SECG recommended curves), a CA generating the DP itself or having the CA
validate the DP if generated by someone else or if all other options fail, you need to realize you
need to validate the DP yourself. Also, for 6.1.3 ANYONE should be able to generate DP, as
long as they are validated somehow.) It is easier to validate than generate DP so this could be a
useful service even if not totally trusted.
3) Section 6.2.2 PKV: Here are my first thoughts on PKV, this likely will need further
discussion. I agree that static public keys should (probably always) be validated, as this is a one-
time cost and can be done by the CA as part of the public key certification process. Ephemeral
public keys need to (at least) have a cofactor used in their calculation (ECC only, for DL the
performance cost was considered too high and was therefore not specified in X9.42) or be
validated. By using cofactor, Lim-Lee attacks on your private key are thwarted. The other
concern that PKV addresses is use of an invalid key, perhaps from an inadvertent bit flip during
generation. I agree that PKV for ephemeral keys may be a cost effective choice for high-risk or
high-value transactions, but think this is appropriate for the security policy to decide when PKV
is appropriate. The "other side" of this concern is that, especially for constrained devices, PKV
can be costly, while cofactor is not very costly.
4) Section 6.2.3 Cryptoperiod: If you destroy the private key, you cannot recreate any
calculation. Some systems allow archiving due to records retention requirements. Certainly the

private key should not be used after cryptoperiod expiry. This stuff is covered in more detail in
key management guideline and so should point to it.
5) Section 6.3 Use of entity identifiers in KDF: This is conservative and binds the users to the
calculation. To achieve this binding the requirement is that the value input to the KDF, whatever
it is, can be juggled to determine the exact values of U and V, this is not achieved by the identity
OR/AND function, although it is clear it does restrict something and so is better than not doing
anything in terms of nailing things down.
6) Section 6.8 Key Confirmation: Often KC is not needed, as the derived key is used right away
and any error will be detected. On the other hand, it does solidify security attributes and so is a
conservative choice. Might be a requirement for high-security applications.
7) Section 6.9 item 2 cofactor: As implied above, I agree with mandating use of cofactor for both
static and ephemeral keys.
8) Section 7: great organization, great job.
9) Section 7.3 Static-Static DH: I think prudence would indicate that time variant info should
ALWAYS be required to be input to the KDF.
10) Section 9 key transport should include ECIES from X9.63.
11) Section 11 key recovery: Forward secrecy and key recovery are incompatible, essentially by
definition. This could be mentioned.

Comments on Key Management Guideline:
1) Section 3.2.4 keysizes: It might be good to clarify exactly what is contained in each key and
how long it is in toto, considering everything. An implementation will need more than 1024 bits
to store a 1024-bit DSA key, for example. The keysize as commonly stated is not the amount of
storage needed to store the key. At the least this should be mentioned.
2) Section 3.2.4 keysizes: Point to section 5.2.1 and 5.2.2 for keysize tables. Also, point to 5.2.3
on effects of breaking a key.
3) Section 4.3 key install: Often split knowledge is a requirement for manual install, so that no
single installer knows the key.
4) Section 4.4.1.1 item d: The "/or" should be removed. "and" is correct as to intent.
5) Section 4.4.1.1 (last sentence): The user should realize that anyone that knows the private key
can simulate him/her. This can affect non-repudiation as more than one user might sign, but it
also affects encryption, as more than one user might decrypt. My suggestion is that the sentence
be generalized. From my way of thinking, if I am acting as an agent for another party (say I work
in a company), it is fine for the other party to generate my key(s), but if not, not. That is, it
should always be OK to generate my own key, but only sometimes is it reasonable for someone
else to generate my key. As a balance to that, perhaps a hack does not generate keys right and
uses a weak seed, but then he suffers. This needs guidance. Also, it is reasonable that I might
want to have a "marriage key" where 2 people might sign with it or a "family" key where any
family member can sign, etc. This means that one of the group signed, but it may not be able to
be determined exactly which one, but there is still non-repudiation to the group. This often
reflects reality. If the president is not around, two VPs can sign or whatever. The verifier just
needs to use the company verification key and knows the contract will not be repudiated.
6) Section 4.7.1.6 In fact, it should be considered an attack if a private key is used with more
than one set of domain parameters. Decoupling is not allowed.
7) Section 4.7.3 backup Table 2: A signing key might be used just for integrity purposes and
non-repudiation is not needed. Also, I simply may not want non-repudiation as a property and I

should not be forced to have it. There should be no concern with backing up such a key. I think
seed for canonical generation of DP needs to have a separate line from a RNG seed. Seed by
itself is confusing. Also, for testing purposes sometimes an RNG reseed is useful, but not for
operational use. Also, I notice RNG keys, this might be the RNG seed in which case seed (by
itself) should be clarified to be DPG seed.
8) Section 5.1.2: Key usage granularity should be allowed to be as fine as desired by the designer
of the solution. This should be clarified. The KMS document sets the minimum.
9) Section 5.1.3 Cryptoperiods: Maximums can be calculated based on the information leakage
assumed by amount of use. (I cannot calculate this, but could assist in reviewing.) Time is just an
approximation. Also, TDES should be assumed to leak info after 2**32 block encrypts due to
blocksize of 64 bits and the effect is probabilistic with a quadratic decay; the point is to stay well
away from 2**32. For example, if I want less than a 1 in a million chance for an adversary to be
able to know ANY info about my plaintext, I should stop at 2**27 encrypted TDES blocks,
which is only 1G bytes. Not sure how to factor this in, but this is a factor in deciding to use AES
as it has a 128 bit blocksize.
10) Section 5.1.3 *2nd one* (typo): DPV and PKV: Assurance of POP and PKV is appropriate
for any public key, not just EC and DL keys. When RSA is added, there needs to be some
discussion of RSA PKV. I can help with this. Also, note that DSA DP are more restrictive than
X9.42 DH keys, in that q is set at a specific size (in relation to p) with DSA while with DH, it
must be that size or larger, so note 9 is not strictly correct.
11) Section 5.1.7 Key recovery: To my way of thinking, key recovery is an ownership issue and
this simplifies the analysis considerably. For example, if a company owns the data, it has a right
to recover it.
12) Section 5.2.1 keysize table: This may be obvious, but when an entry is omitted, one needs to
go to the higher entry. Also, as an example, it should be made clear to all users that a TDES key
that was protected using ECC 160 bits only has 80 bits of effective security, not 112 bits. I think
any system should state its claimed security level and then everything needs to be done at least
that good or better.
13) Section 5.2.2 keysize time: The basic assumptions that were used to create this table should
be given. As it is, this info is supplied "nekkid". The rationale is important as (at best) this table
is a guestimate. The assumptions might turn out to be false and we need to know if this looks like
it is happening and not just blindly follow the table. Note also that as the blocksize of TDES is
only 64 bits, after 2**32 data blocks are encrypted, information leakage should be expected to
occur, which might violate security requirements. The point is that this table seems to only
consider keysize. The point is that use of AES can be indicated for other than just keysize
reasons. Also, I think more guidance should be given on using at least AES-128 appropriate
keysizes. There are many useful methods that might lose a few bits of key security; having some
extra key bits to spend in this way is not inappropriate. Also, there should be some discussion of
lucky guessing, not just exhaustion, this mainly affects symmetric keysize. I might want to use a
larger key to achieve a larger assurance against the potential for lucky guessing. If I want less
than a billion chance of a lucky guess and think 2**80 is doable, I really want 2**112 and so
forth.

Issues at end of above:
1) No comment.

2) It is safest to prohibit this mixing. It should definitely be disallowed for high-risk or high
value transactions.
3) I think there should be a stated keysize security level and all crypto in the system MUST
operate at that level or above.
4) Verification tag size is different than keysize. There can be valid reasons to allow shorter tag
sizes, but it should be documented why the smaller size is (thought to be) OK. But this takes
thought and the tag size should not be allowed to be shorter for the only reason that that is the
way it is. The safe default is to let it be determined by keysize security level.
5) My take on the TLS PRF is that it did not meet its stated goals. Let us not propagate this
design by endorsing it without a LOT of evidence that it is acceptable. It is fixable so that the
revised method would clearly meet the goals and have appropriate security. I have proposed such
a fix to ANSI X9 but we have not yet had a meeting to discuss.

From: Francois.Rousseau@CSE-CST.GC.CA
To: kmscomments@nist.gov
 Subject: Key Establishment Schemes Document vs PKCS #11
Date: Mon, 19 Nov 2001 11:51:18 -0500

 Hi everyone,
I am sorry, but because of other commitments I could not attend your Second Key Management
Workshop on November 1-2. I have since read the workshop version of the Key Establishment
Schemes document, which is available on your Web site, and have found it very comprehensive.
However, I am not sure if the issues raised below were discussed during this workshop. As the
author of the X9.42 and ECC key derivation mechanisms, which were recently added in the
latest version 2.11 of the PKCS #11 standard (ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v211/),
I have the following comments against this document:

a. Although a new mechanism was added under PKCS #11 v2.11 for the generation of Domain
Parameters for the schemes specified in ANSI X9.42, PKCS #11 does not currently have a
mechanism to generate the Domain Parameters for the schemes specified in ANSI X9.63 as
mandated in this document. It was instead expected that most ECC implementations would use
the Named Curves specified in FIPS 186-2 as the Domain Parameters for these ECC key
derivation mechanisms.

b. PKCS #11 does not currently have a class of mechanisms to specifically validate Domain
Parameters as mandated in this document.

c. PKCS #11 does not currently have a class of mechanisms to specifically validate Public Keys
as mandated in this document.

d. Although a NULL Key Derivation Function (KDF) and the three KDFs specified for the
schemes in ANSI X9.42 and X9.63 were added under PKCS #11 v2.11, PKCS #11 does not
currently have the distinct KDF specified in this document.

e. Implementation Validation through a MacTag is only explicitly mentioned for the X9.42 key
derivation mechanisms under PKCS #11 v2.11 and not for the ECC key derivation mechanisms
since this subject was not discussed under ANSI X9.63. It could however easily be added.

f. PKCS #11 does not currently have a class of mechanisms to specifically support Key
Confirmation as suggested in this document.

g. PKCS #11 v2.11 supports X9.63 key derivation mechanisms with the Modified Diffie-
Hellman primitive and also with the Standard Diffie-Hellman primitive contrary to what is
specified in this document since it was felt that Patent issues with the Modified Diffie-Hellman
primitive, which uses co-factor multiplication, could possibly cause problems.

h. The Full Unified Model C(2,2,DH,EC), dhHybridOneFlow C(1,2,DH,FF) and 1-PassUnified
Model C(1,2,DH,EC) schemes specified in this document are not explicitly supported under

PKCS #11 v2.11, however they could be implemented through multiple calls against the existing
mechanisms currently specified under PKCS #11 v2.11.

i. I have since noted that the MQV mechanism parameters for both the X9.42 and the ECC key
derivation mechanisms specified in PKCS #11 v2.11 have errors since they do not currently
provide all the required keys to the key derivation mechanisms. I was planning to eventually a
Technical Corrigendum to get this corrected.

Feel free to contact me if you have any question related with these
comments.
Best regards,
Francois

Francois Rousseau
IT Standards, Senior Advisor
Communications Security Establishment
francois.rousseau@cse-cst.gc.ca
(613) 991-8364
Edward Drake Building
1500 Bronson, Ottawa, Ontario, K1G 3Z4

